Test 2 - Requires Respondus LockDown Browser + Webcam
- Due Apr 10 at 11:59pm
- Points 100
- Questions 9
- Available after Mar 5 at 8am
- Time Limit 75 Minutes
- Requires Respondus LockDown Browser
Instructions
General Formulas
\(\displaystyle\overline{x}=\frac{\sum x}{n}\)
\(\displaystyle\mu=\frac{\sum x}{N}\)
\(\displaystyle s=\sqrt{\frac{\sum\left(x-\overline{x}\right)^2}{n-1}}\)
\(\displaystyle \sigma=\sqrt{\frac{\sum\left(x-\mu\right)^2}{N}}\)
\(\displaystyle \textrm{CV}=\frac{s}{\overline{x}}(100\%)\)
\(\displaystyle \textrm{CV}=\frac{\sigma}\mu{}(100\%)\)
\(\displaystyle z=\frac{x-\overline{x}}{s}\)
\(\displaystyle z=\frac{x-\mu}{\sigma}\)
Probability/Counting Formulas
\(\displaystyle P(A\textrm{ or }B) = P(A)+ P(B) - P(A\textrm{ and }B)\)
If \(A\) and \(B\) are disjoint, then \(P(A\textrm{ or }B)=P(A)+P(B)\)
\(\displaystyle P(A\textrm{ and }B) = P(A)\cdot P(B|A)\)
If \(A\) and \(B\) are independent, then \(P(A\textrm{ and }B)=P(A)\cdot P(B)\)
\(\displaystyle P(B|A)=\frac{P(A\textrm{ and }B)}{P(A)}\)
Baye's Theorem: \(\displaystyle P(A|B)=\frac{P(A)\cdot P(B|A)}{P(B)}\)
\(\displaystyle nPr=\frac{n!}{(n-r)!}\)
\(\displaystyle nCr=\frac{n!}{(n-r)!r!}\)
Distribution Formulas
|
Applies to all Distributions |
Binomial Distribution |
|
\(\displaystyle\mu=\sum\left[x\cdot P(x)\right]\) |
\(\displaystyle P(x)=\frac{n!}{(n-x)!x!}\cdot p^x\cdot q^{n-x}\) |