Test 3 - Requires Respondus LockDown Browser + Webcam

  • Due Apr 10 at 11:59pm
  • Points 100
  • Questions 7
  • Available after Apr 7 at 8am
  • Time Limit 75 Minutes
  • Requires Respondus LockDown Browser

Instructions

General Formulas

\(\displaystyle\overline{x}=\frac{\sum x}{n}\)
\(\displaystyle\mu=\frac{\sum x}{N}\)
\(\displaystyle s=\sqrt{\frac{\sum\left(x-\overline{x}\right)^2}{n-1}}\)
\(\displaystyle \sigma=\sqrt{\frac{\sum\left(x-\mu\right)^2}{N}}\)
\(\displaystyle \textrm{CV}=\frac{s}{\overline{x}}(100\%)\)
\(\displaystyle \textrm{CV}=\frac{\sigma}\mu{}(100\%)\)
\(\displaystyle z=\frac{x-\overline{x}}{s}\)
\(\displaystyle z=\frac{x-\mu}{\sigma}\)

Probability/Counting Formulas
\(\displaystyle P(A\textrm{ or }B) = P(A)+ P(B) - P(A\textrm{ and }B)\)

If \(A\) and \(B\) are disjoint, then \(P(A\textrm{ or }B)=P(A)+P(B)\)

 

\(\displaystyle P(A\textrm{ and }B) = P(A)\cdot P(B|A)\)

If \(A\) and \(B\) are independent, then \(P(A\textrm{ and }B)=P(A)\cdot P(B)\)

 

\(\displaystyle P(B|A)=\frac{P(A\textrm{ and }B)}{P(A)}\)
Baye's Theorem: \(\displaystyle P(A|B)=\frac{P(A)\cdot P(B|A)}{P(B)}\)
\(\displaystyle nPr=\frac{n!}{(n-r)!}\)
\(\displaystyle nCr=\frac{n!}{(n-r)!r!}\)

 

Distribution Formulas

Applies to all Distributions

Binomial Distribution

Poisson Distribution

\(\displaystyle\mu=\sum\left[x\cdot P(x)\right]\)
\(\displaystyle \sigma^2=\sum\left[\left(x-\mu\right)^2\cdot P(x)\right]\)
\(\displaystyle \sigma=\sqrt{\sum\left[\left(x-\mu\right)^2\cdot P(x)\right]}\)

\(\displaystyle P(x)=\frac{n!}{(n-x)!x!}\cdot p^x\cdot q^{n-x}\)
 \(\displaystyle\mu=np\)
 \(\displaystyle\sigma^2=npq\)
 \(\displaystyle\sigma=\sqrt{npq}\)

\(\displaystyle P(x)=\frac{\mu^x\cdot \textrm{e}^{-\mu}}{x!}\)
\(\textrm{e}\approx 2.718281828459045\)
\(\displaystyle\sigma^2=\mu\)
\(\displaystyle\sigma=\sqrt{\mu}\)

Formulas involving the standard normal distribution and sampling distributions

\(z=\frac{x-\mu}{\sigma}\)

\(\mu_{\overline{x}}=\mu\)

\(\sigma_{\overline{x}}=\frac{\sigma}{\sqrt{n}}\)

Formulas involving sample proportions

\(\displaystyle E=z_\frac{\alpha}{2}\sqrt{\frac{\hat{p}\hat{q}}{n}}\)

\(\displaystyle n=\frac{\left[z_\frac{\alpha}{2}\right]^2(0.25)}{E^2}\)

06 z-tables.pdf

Only registered, enrolled users can take graded quizzes